Direct identification of structural parameters from dynamic responses with neural networks

نویسندگان

  • Bin Xu
  • Zhishen Wu
  • Genda Chen
  • Koichi Yokoyama
چکیده

A novel neural network-based strategy is proposed and developed for the direct identification of structural parameters (stiffness and damping coefficients) from the time-domain dynamic responses of an object structure without any eigenvalue analysis and extraction and optimization process that is required in many identification algorithms for inverse problems. Two back-propagation neural networks are constructed to facilitate the process of parameter identifications. The first one, called emulator neural network, is to model the behavior of a reference structure that has the same overall dimension and topology as the object structure to be identified. After having been properly trained with the dynamic responses of the reference structure under a given dynamic excitation, the emulator neural network can be used as a nonparametric model of the reference structure to forecast its dynamic response with sufficient accuracy. However, when the parameters of the reference structure are modified to form a so-called associated structure, the dynamic responses forecast by the network will differ from the simulated responses of the associated structure. Their difference can be assessed with a proposed root mean square (RMS) difference vector for both velocity and displacement responses. With the associated structural parameters and their corresponding RMS difference vectors, another network, called parametric evaluation neural network, can be trained. In this study, several 5-story frames are considered as example object structures with simulated displacement and velocity time histories that mimic the measured dynamic responses in practice. The performance of the proposed strategy has been demonstrated quite satisfactorily; the error for the estimation of each stiffness or damping coefficient is less than 10% even in the presence of 7% noise. Numerical simulations show that the accuracy of the identified parameters can be significantly improved by injecting noise in the training patterns for the parametric evaluation neural network. The proposed strategy is extremely efficient in computation and thus has potential of becoming a practical tool for near real time monitoring of civil infrastructures. r 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...

متن کامل

The Identification of the Modal Parameters of Orbital Machines using Dynamic Structural Approach

The researcher measured the least number of frequency response functions required for the identification of modal parameters, in order to simplify the identification of modal properties of such systems. In this work, the orbital machines are supposed to be a combination of orbital and non-orbital components. Structural Approach specified the identification of dynamic properties only to those ph...

متن کامل

Identification of rotor bearing parameters using vibration response data in a turbocharger rotor

Turbochargers are most widely used in automotive, marine and locomotive applications with diesel engines. To increase the engine performance nowadays, in aerospace applications also turbochargers are used. Mostly the turbocharger rotors are commonly supported over the fluid film bearings. With the operation, lubricant properties continuously alter leading to different load bearing capacities. T...

متن کامل

Identification of Structural Defects Using Computer Algorithms

One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed,  and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2004